Sliding Functor and Polarization Functor for Multigraded Modules

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-infinity algebras, modules and functor categories

In this survey, we first present basic facts on A-infinity algebras and modules including their use in describing triangulated categories. Then we describe the Quillen model approach to A-infinity structures following K. Lefèvre’s thesis. Finally, starting from an idea of V. Lyubashenko’s, we give a conceptual construction of A-infinity functor categories using a suitable closed monoidal catego...

متن کامل

The functor of p-permutation modules for abelian groups

Let k be a field of characteristic p, where p is a prime number, let ppk(G) be the Grothendieck group of p-permutation kG-modules, where G is a finite group, and let C ppk(G) = C ⊗Z ppk(G). In this article, we find all the composition factors of the biset functor C ppk restricted to the category of abelian groups.

متن کامل

General Γ - Hypermodules : Θ relation , T - Functor and Fundamental Modules

The main purpose of this paper is to introduce the concept of general Γ-hypermodules as a generalization of Γ-hypermodules, as a generalization of Γ-modules and as a generalization of modules. Then we extended the isomorphism theorems to general Γhypermodules. Also, it is observer that if N is a normal Γ-subhypermodule of Γ-hypermodule M, then, [M : N∗] is an abelian group. Finally, we show tha...

متن کامل

Interpolation functor and computability

Computability of Banach spaces is discussed. A compatible relation is shown to hold between the complex interpolation spaces of Calder) on (Studia Math. 24 (1964) 113) and the computability structures introduced by Pour-El and Richards (Computability in Analysis and Physics, Springer, Berlin, 1989). Namely, it is veri5ed that Calder) on’s original construction of the complex interpolation funct...

متن کامل

Abelian Categories of Modules over a (Lax) Monoidal Functor

In [CY98] Crane and Yetter introduced a deformation theory for monoidal categories. The related deformation theory for monoidal functors introduced by Yetter in [Yet98] is a proper generalization of Gerstenhaber’s deformation theory for associative algebras [Ger63, Ger64, GS88]. In the present paper we solidify the analogy between lax monoidal functors and associative algebras by showing that u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2012

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2010.547540